From Project to Paper: Meet the Editors of Cardiovascular Research

Study Design: It all starts here!

He/she who is without sin can cast the first stone....

Disclosures:

www.explorable.com

www.wikipedia.com

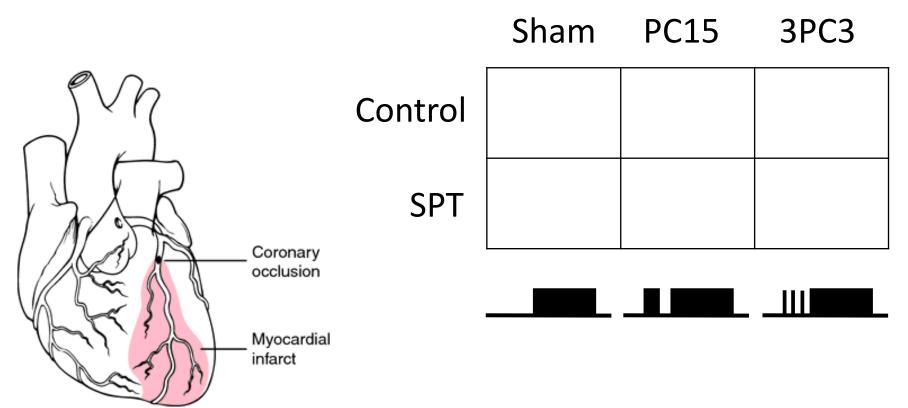
Scope of Cardiovascular Research

- Cardiovascular Research is the international journal of the ESC for basic and translational research, across different disciplines and areas
-papers at the molecular, sub-cellular, cellular, organ, and organism level, and clinical proof-of-concept and translational studies
-to enhance insight in cardiovascular disease mechanisms and the perspective for innovation
-provide a significant contribution to the field with relevance for cardiovascular biology and diseases

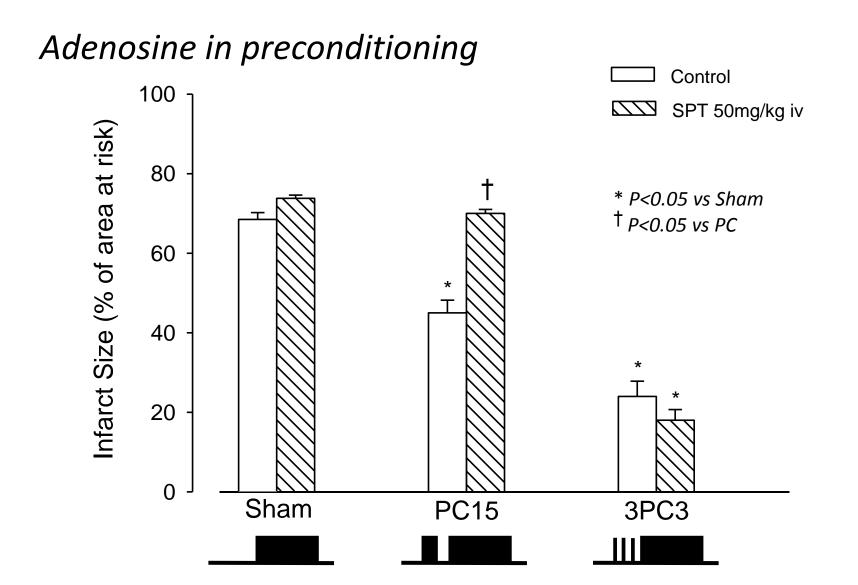
Study Design

- The design is the structure of any scientific work; it gives direction and systematizes the research
- ➤ Research design is the framework that is created to seek answers to research questions
- There is a variety of designs:
 - Descriptive Designs (e.g. case study)
 - Correlational Studies
 - Semi-Experimental Designs
 - Experimental
 - Reviewing (Systematic Reviews)
 - Meta-Analysis

Experiment


- An experiment is a procedure carried out to verify, refute, or validate a hypothesis
- Experiments provide insight into cause-andeffect by demonstrating what outcome occurs when a particular factor is manipulated
- Experiments vary greatly in goal and scale, but always rely on repeatable procedure and logical analysis of the results.

- How many factors does the design have?
- Are these factors fixed or variable?
- What is the relevance of interactions between factors?
- Are control conditions needed, and what should they be?
- Test efficacy of interventional tools
- What are the background variables?
- What is the sample size. How many units must be collected for the experiment to be generalisable and have enough power?
- Technical replicates versus independent biological repeats


- How many factors does the design have?
- Are these factors fixed or variable?
- What is the relevance of interactions between factors?
- Are control conditions needed, and what should they be?
- Test efficacy of interventional tools
- What are the background variables?
- What is the *sample size*. How many units must be collected for the experiment to be *generalisable* and have *enough power*?
- Technical replicates versus independent biological repeats

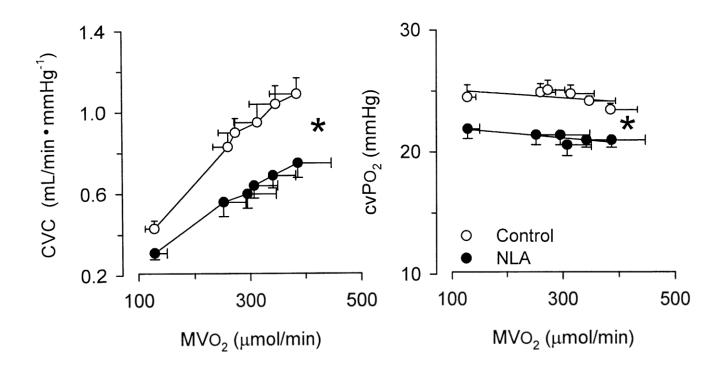
Factorial design

- Factor 1 = Ischemic preconditioning stimulus (PC)
- Factor 2 = Adenosine receptor blockade (SPT)

Factorial Design

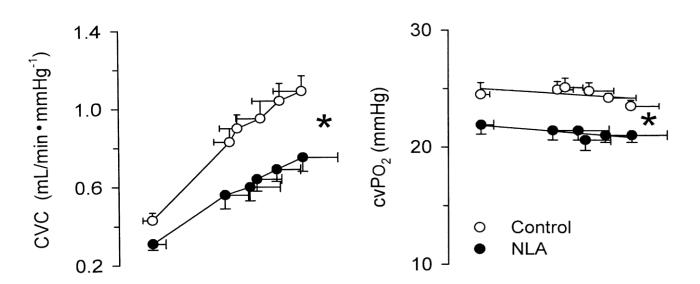
Factorial design

2 x 7 design

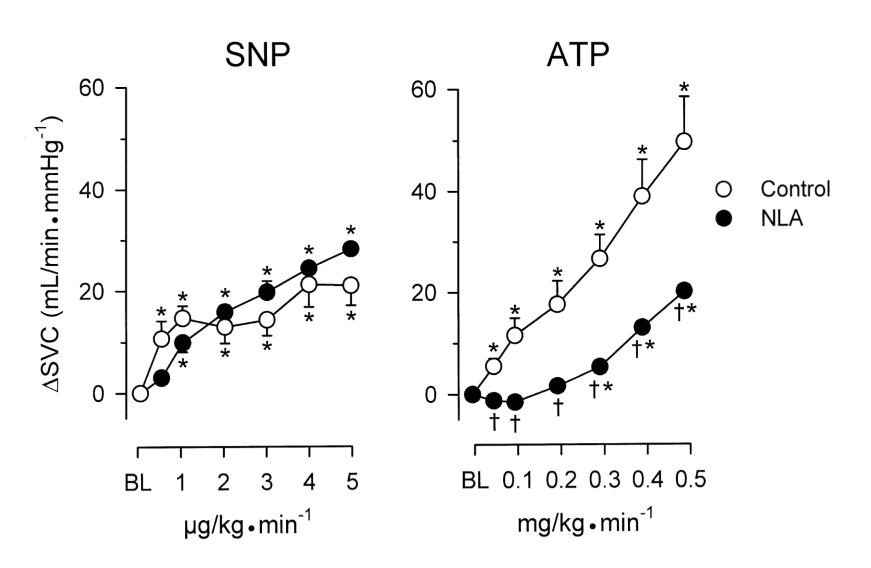

- Factor 1 = NO synthase inhibition (Control and NLA)
- Factor 2 = Physical activity (7 levels of physical activity)

Hemodynami	c effects	of NO	synthase	inhibition
------------	-----------	-------	----------	------------

		Rest		Exercise (km/h)					
		Lying	Standing	1	2	3	4	5	
Systemic									
HR	Control	116±6	135±6*	165±7*	184±8*	200±6*	231±6*	254±5*	
(bpm)	NLA	93±5†	119±5*†	135±4*†	146±5*†	164±7*†	190±8*†	218±5*†	
MAP	Control	101±2	90±2	92±1	89±1	92±1	91±2	92±2	
(mmHg)	NLA	132±4†	122±2†	125±2†	127±3†	126±2†	124±2†	122±2†	
CO	Control	3.7±0.2	5.0±0.3*	6.0±0.3*	6.5±0.3*	7.0±0.3*	7.5±0.3*	8.1±0.3*	
(1/min)	NLA	2.8±0.2†	4.1±0.3*†	4.9±0.3*†	5.2±0.3*†	5.8±0.4*†	6.6±0.3*†	7.4±0.4*†	
SVC	Control	37±2	56±4*	65±3*	73±4	76±4*	82±3*	88±3*	
(m1/min mmHg ⁻¹)	NLA	22±1†	34±3*†	40±3*†	41±3*†	46±3*†	53±3*†	60±3*†	
$LVdP/dt_{max}$	Control	3030 ± 180	3450±210*	4250±300*	4520±280*	5010±320*	5630±240*	6090±240*	
(mmHg/s)	NLA	2330±110†	2970±150*†	3490±180*†	3870±220*†	4610±280*	5720±410*	6690±330*†	
LVSP	Control	119±4	118±3	124±3*	126±2*	131±3*	135±3*	142±4*	
(mmHg)	NLA	149±5†	145±5*†	147±3*†	149±4*†	151±3*†	155±4*†	159±3*†	

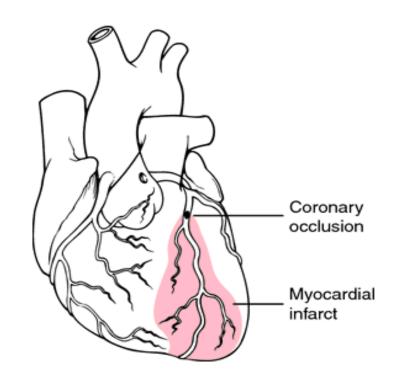

Factorial design

Variable factors


- How many factors does the design have?
- Are these factors *fixed or variable*?
- What is the relevance of interactions between factors?
- Are control conditions needed, and what should they be?
- Test efficacy of interventional tools
- What are the background variables?
- What is the *sample size*. How many units must be collected for the experiment to be *generalisable* and have *enough power*?
- Technical replicates versus independent biological repeats

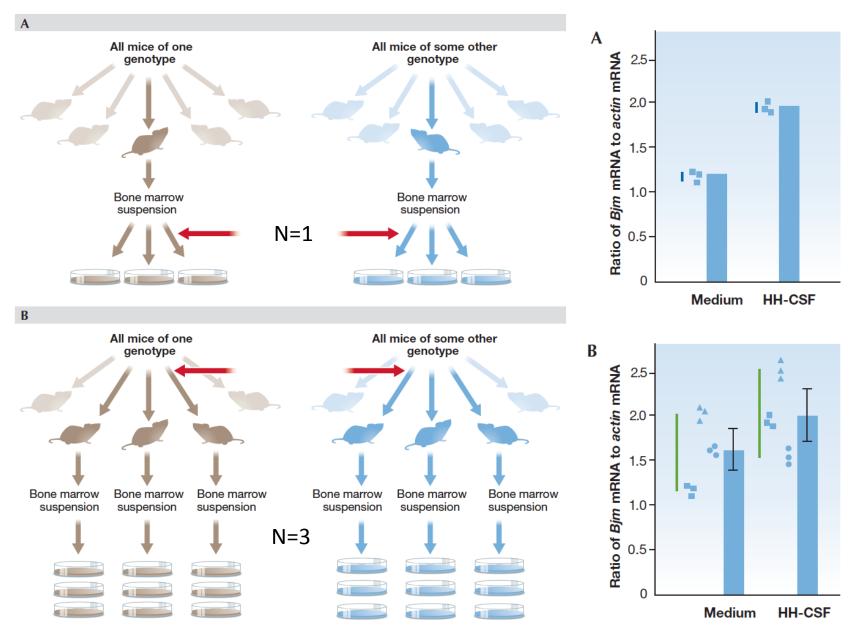
Importance of control conditions

- How many factors does the design have?
- Are these factors fixed or variable?
- What is the relevance of interactions between factors?
- Are control conditions needed, and what should they be?
- Test efficacy of interventional tools
- What are the background variables?
- What is the *sample size*. How many units must be collected for the experiment to be *generalisable* and have *enough power*?
- Technical replicates versus independent biological repeats


Test efficacy of interventional tools

- How many factors does the design have?
- Are these factors *fixed or variable*?
- What is the relevance of interactions between factors?
- Are control conditions needed, and what should they be?
- Test efficacy of interventional tools
- What are the background variables?
- What is the *sample size*. How many units must be collected for the experiment to be *generalisable* and have *enough power*?
- Technical replicates versus independent biological repeats

Taking background factors into account


- Ischemia time
- Area at Risk
- Collateral flow
- Temperature
- Hemodynamics
- Timing of treatment

- How many factors does the design have?
- Are these factors fixed or variable?
- What is the relevance of interactions between factors?
- Are control conditions needed, and what should they be?
- Test efficacy of interventional tools
- What are the background variables?
- What is the sample size. How many units must be collected for the experiment to be generalisable and have enough power?
- Technical replicates versus independent biological repeats

Technical Replicates versus Biological

Vaux et al., EMB Repeat, \$:291-296

Scope of Cardiovascular Research

- Cardiovascular Research is the international journal of the ESC for basic and translational research, across different disciplines and areas
-papers at the molecular, sub-cellular, cellular, organ, and organism level, and clinical proof-of-concept and translational studies
-to enhance insight in cardiovascular disease mechanisms and the perspective for innovation
-provide a significant contribution to the field with relevance for cardiovascular biology and diseases

Study Design: Enhancing Impact

- Multilayered studies
 - Multiple species (human)
 - Multiple platforms: in silico, in vitro and in vivo
 - Multiple technologies
 - Multiple lines of evidence of causality
 - Healthy and diseased states
- Experimental design involves not only the selection of suitable predictors and outcomes, but planning the delivery of the experiment under statistically optimal conditions given the constraints of available resources.

Conclusions

Proper design is extremely important:

- Control conditions
- Interventional tools
- Background variables
- Sample size
- Technical replicates vs biological repeats
- Multilevel approach to enhance impact
- > Within the constraints of available resources